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Abstract— In this paper, we pave a novel way towards the
concept of bit-wise In-Memory Convolution Engine (IMCE) that
could implement the dominant convolution computation of Deep
Convolutional Neural Networks (CNN) within memory. IMCE
employs parallel computational memory sub-array as a funda-
mental unit based on our proposed Spin Orbit Torque Magnetic
RandomAccessMemory (SOT-MRAM) design. Then, we propose
an accelerator system architecture based on IMCE to efficiently
process low bit-width CNNs. This architecture can be leveraged
to greatly reduce energy consumption dealing with convolutional
layers and also accelerate CNN inference. The device to architec-
ture co-simulation results show that the proposed system archi-
tecture can process low bit-width AlexNet on ImageNet data-set
favorably with 785.25μJ/img, which consumes ∼3× less energy
than that of recent RRAM based counterpart. Besides, the chip
area is ∼4× smaller.

I. INTRODUCTION

Deep Convolutional Neural Network (CNN) has achieved

world-wide attention due to outstanding performance in image

recognition over large scale data-set such as ImageNet [1]. For

instance, ResNet shows a prominent recognition accuracy of

96.43%, which is higher than human beings (94.9%). Follow-

ing the trend, when going deeper in CNNs (e.g. ResNet em-

ploys 18-1001 layers), memory/computational resources and

their communication have faced inevitable limitations. This

can be interpreted as “CNN power and memory wall” [2],

leading to the development of different approaches to improve

CNN efficiency at either algorithm or hardware level.

Estimation of CNN using shallower models, quantizing pa-

rameters [3,4], compressing pre-trained networks, and network

binarization [5–7] are the most widely explored algorithmic ap-

proaches. Recent research efforts have significantly reduced

both model size and computing complexity by using low bit-

width weights, activations, and gradients [3, 4]. For example,

Zhou et al. [3] have shown that low bit-width convolution ker-

nels achieved from their quantization method can accelerate

both training and inference with almost comparable prediction

accuracy as 32-bit counterparts on ImageNet data-set.

In hardware design domain, the isolated memory and com-

puting units (GPU or CPU) interconnected via buses has faced

serious challenges, such as long memory access latency, sig-

nificant congestion at I/Os, limited memory bandwidth, and

huge leakage power consumption for the neural network ac-

celeration [8, 9]. To address these concerns, in-memory pro-
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Fig. 1. Execution time of a sample CNN for scene labeling on CPU and
GPU [1].

cessing platforms built on non-volatile devices can be an al-

ternative solution to integrate memory and logic, leading to an

energy-efficient information processing platform [8,10]. Resis-

tive Random Access Memory (RRAM) [8, 10], Spin-Transfer

Torque Magnetic Random Access Memory (STT-MRAM) [11]

and recent Spin Orbit Torque Magnetic Random Access Mem-

ory (SOT-MRAM) [12] are very promising candidates to pave

a novel path to realize such area and energy-efficient systems

supporting in-memory processing due to features like non-

volatility, zero standby leakage, compatibility with CMOS fab-

rication process and excellent integration density.

A CNN basically consists of multiple stacking layers,

namely convolution, activation, and pooling. As depicted in

Fig. 1 [1], convolutional layer always takes most fraction of

execute time and computational sources in both GPU and CPU

implementations. This motivates us to propose the first opti-

mized bit-wise In-Memory Convolution Engine (IMCE) based

on SOT-MRAM implementing an energy and area-efficient

convolutional accelerator for low bit-width CNN.

The main contributions of this work are summarized as fol-

lows: (1) We first develop a computational sub-array archi-

tecture based on SOT-MRAM, which could be used as both

non-volatile memory and reconfigurable in-memory logic; (2)

We propose a CNN accelerator system architecture capable of

implementing low bit-width convolution and pooling opera-

tions. The design of bit-wise IMCE along with other compo-

nents are developed within the proposed system architecture;

(3) We present detailed hardware mapping and task distribu-

tion of each computational layer of low bit-width CNNs into

the proposed system; (4) We perform extensive experiments

on our proposed CNN accelerator, such as inference accuracy,

memory storage, area, and energy consumption, to show the

favorable performance.

II. PRELIMINARIES ON CNN

In this section, we briefly review the terminology of CNN

and introduce low bit-width CNN and binary CNN (BCNN).

CNN is a machine learning classifier which takes an image as
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Fig. 2. Visualization of Inference (a.k.a forward propagation) in CNN.

input and then computes the probabilities that image feature

belong to a sort of output classes. Typically, a CNN consists

of several convolutional layers and pooling layers followed by

fully-connected layers (FC) as depicted in Fig. 2. Note that,

it has been proven that fully-connected layers could be equiv-

alently implemented by convolutions [3, 5]. Fig. 2 also shows

visualization of convolutional layer of CNN where each layer

receives a set of features organized in multi-channel as in-

put (Input fmaps). It applies kernels (filters) by performing
high-dimensional convolutions and then produces the features

(Output fmaps) for the next layer [13]. The dimensions of
both fmaps (input/output) and kernels are 4-D (multiple 3-D

structures) and a batch of input fmaps is typically processed by

multiple 3-D kernels. After convolution, a non-linear activation

function, such as ReLU, will be applied to the results. Consid-

ering the shape parameters listed in Table I, the computation of

one convolutional layer can be defined as follow:

O[n][k][x][y]=

ReLU(B[k]+
∑Fh−1

i=0

∑Fw−1
j=0

∑C−1
z=0 I[n][z][Ux+i][Uy+j]

W [k][z][i][j]),

0≤n<N,0≤k<K,0≤x<W2,0≤y<H2; (1)

where O, B, I , and W are the matrices representing output

fmaps, Bias, input fmaps, and kernels, respectively. W2/H2

dimensions can be achieved asW2 = (W1−Fw+2P )/S+1
and H2 = (H1− Fh + 2P )/S + 1.

TABLE I

SHAPE PARAMETERS OF A CONVOLUTIONAL LAYER

Shape Parameter Description

input fmaps dimension W1×H1× C
3-D fmaps batch size (input/output) N

no. of 3-D kernels K
spatial extent of kernels Fw × Fh × C

stride S
no. of zero padding P

output fmaps dimension W2×H2×M

CNN functions in two different modes: (1) training mode

in which the configuration values of layers are calculated by

training the network on pre-classified training images, and (2)

inference mode where new test images are examined. In both

modes, according to Eq-(1), multiply-accumulate (MAC) is

the key and most computationally expensive arithmetic opera-

tion [2]. To eliminate the need for massiveMAC operations and
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Fig. 3. (a) SOT-MRAM device structure and Spin Hall Effect, (b) Schematic
and (c) biasing conditions of SOT-MRAM bit-cell.

memory usage, researchers have come up with various quan-

tized/binary CNNs by forcing the inputs/weights/gradients

to be quantized/binary specifically in forward propagation.

DoReFa-NET shows acceptable accuracy over SVHN and Im-

ageNet data-sets under different low bit-width configuration af-

ter applying its quantization method [3]. In an extreme quanti-

zation, BinaryConnect [6] trains deep neural networks with bi-

nary weights and shows near state-of-the-art results on MNIST

and CIFAR-10 data-sets. BinaryNet [14] proposes an exten-

sion to BinaryConnect by binarizing both wights and activa-

tions. XNOR-NET [5] offers simple and accurate BCNNs and

achieves almost similar results with full-precision AlexNet on

ImageNet. Performing bit-wise convolution between the binary

inputs and weights in forward path is shown in [5, 6] thanks to

the following formula which computes the dot-product of two

bit vector I andW using bitcount and and operations.

I ∗W = bitcount(and(I,W ))1 (2)

III. IN-MEMORY PROCESSING PLATFORM

A. SOT-MRAM

Fig. 3a shows a Spin-Orbit Torque Magnetic Random Ac-

cess Memory (SOT-MRAM) device structure with the compos-

ite structure of spin Hall metal (SHM) and Magnetic Tunnel

Junction (MTJ). Here the flow of charge current (±y) through
the SHM (Tungsten, β − W [15]) will cause accumulation of

opposite directed spin on both surfaces of SHM due to spin Hall

effect [16]. Thus, a spin current flowing in ±z is generated and
further produces spin-orbit torque (SOT) on the adjacent free

magnetic layer, causing switch of magnetization. The bit-cell

structure of 2T1R SOT-MRAM and its biasing conditions are

shown in Fig. 3b and 3c, respectively.

In this work, the magnetization dynamics of the free ferro-

magnetic (FM) layer is modeled by LLG equation with STT

term and SHE term [17]. Note that the ferromagnets in MTJ

have In-plane Magnetic Anisotropy (IMA) in x-axis [16]. With

the given thickness (1.2nm) of the tunneling layer (MgO), the

Tunnel Magneto-Resistance (TMR) of the MTJ is ∼ 168.5%.
1When I andW are vectors ∈{-1,+1}, this equation has a variant employ-

ing XNOR [3]:

I ∗W = N − 2× bitcount(xnor(I,W ))
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B. Computational Sub-array Architecture

The proposed SOT-MRAM sub-array architecture could

work in dual mode that perform both memory read-write and

AND/OR logic operations. Fig. 4a shows the architecture of

2×2 memory array. Each SOT-MRAM cell is associated with
the Write Word Line (WWL), Read Word Line (RWL), Write

Bit Line (WBL), Read Bit Line (RBL), and Source Line (SL) to

perform typical memory operations. Moreover, in our design,

any two cells in identical column (i.e. RBL) could be sensed si-

multaneously to implement an in-memory logic function. The

peripheral decoders (active-high output) control the activation

of current path through the array. Voltage drivers are used with

the WBLs for providing the required write voltage. A voltage

mode Sense Amplifier (SA) [16] is connected to the RBL for

sensing the total resistance in the selected current path during

Read or Computing mode.

Memory Write: To write a bit in any of the SOT-MRAM
cells, for example in the cell of 1st row and 1st column, write

current should be injected through the heavy metal substrate

of SOT-MRAM. To activate this write current path, WWL1

should be activated by the Row Decoder and SL1 is grounded,

while all the other word lines and source lines are kept deac-

tivated. Now, in order to write ‘1’ (/ ‘0’), the voltage driver

(V1) connected with WBL1 is set to positive (/negative) write

voltage. This allows sufficient charge current (120 μA) flows
from V1 to ground (/ground to V1), leading to MTJ resistance

in High-RAP (/Low-RP )

Memory Read: For typical memory read, a read current
flows from the selected SOT-MRAM cell to ground, generat-

ing a sense voltage at the input of SA, which is compared with

memory mode reference voltage (Vsense,P<Vref<Vsense,AP).
This reference voltage generation branch is selected by setting

the Enable values (ENM , ENAND, ENOR)= (1,0,0). Now,
if the path resistance is higher (/lower) than Rref , i.e. RAP

(/RP ), then the output of the SA produces High (/Low) voltage

indicating logic ‘1’ (/ ‘0’).

Computing Mode: In computing mode, every two bits
stored in the identical column can be selected and sensed si-

multaneously as depicted in Fig. 4a. Note that, the row

decoders are modified to support multi-line enable function,

through combining two single-line enable decoder with their

outputs connected to OR gates. Then, the equivalent resis-

tance of such parallelly connected SOT-MRAMs and their

cascaded access transistors are compared with a specific ref-

erence by SA. Through selecting different reference resis-

tances (ENM , ENAND, ENOR), the SA can perform basic in-

memory Boolean functions (i.e. AND and OR). For AND op-

eration, Rref is set at the midpoint of RAP //RP (‘1’,‘0’) and

RAP //RAP (‘1’,‘1’). Thus only when both of the two selected

SOT-MRAM bit-cells are in anti-parallel state (i.e. binary in-

put: ‘1’,‘1’), the output is high, whereas output is low. Simi-

larly, for OR operation,Rref is set at the midpoint ofRP //RP

andRP //RAP . To validate the variation tolerance of sense cir-

cuit, we have performed Monte-Carlo simulation with 100000

trials. A σ = 5% variation is added on the Resistance-Area
product (RAP), and a σ = 10% process variation is added on
the TMR. The simulation result of sense voltage (Vsense) distri-

butions in Fig. 4b shows the sense margin of in-memory com-

puting. It will be reduced by increasing the logic fan-in (i.e.
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Fig. 4. (a) Proposed in-memory processing sub-array architecture based on
SOT-MRAM. The layout of two adjacent SOT-MRAM cells is also indicated.

(b) Monte Carlo simulation result of the sense voltage (Vsense) distribution.

number of parallel memory cells). Thus, to avoid read failure

(overlapping of Vsense distribution), only two fan-in in-memory

logic is used in this work. Note that parallel computing/read

within sub-array is implemented by using one SA per bit-line

with exact same mechanism.

IV. SYSTEM ARCHITECTURE OF ACCELERATOR

General overview of the proposed system architecture for

performing low bit-width CNN is shown in Fig. 5a. This archi-

tecture mainly consists of Image Bank, Kernel Bank, bit-wise

In-Memory Convolution Engine (IMCE), and Digital Process-

ing Unit (DPU). As it can be seen in Fig. 1, convolutional

layers contribute the largest fraction of computation time and

complexity to CNNs. That is why in this work we mainly focus

on convolutional layer. Assume Input fmaps (I) and Kernels
(W ) are initially stored in Image Banks and Kernel Banks of
memory, respectively. As depicted in Fig. 5a, inputs need to be

constantly quantized before mapping into computational sub-

arrays. However, quantized shared kernels can be utilized for

different inputs. This step is performed using DPU’s Quan-

tizer and then the results are mapped to IMCE’s sub-arrays

(Fig. 5b). For realization of bit-wise IMCE, the proposed

computational sub-array in Section III is readily utilized such

that ultra-efficient and parallel in-memory AND operations re-

quired for convolutions can be handled. The functionality of

bit-wise IMCE and other components is elaborated in the fol-

lowing subsections.

A. Bit-Wise In-Memory Convolution Engine

The main idea behind employing bit-wise convolution is to

exploit logic AND, bitcount, and bitshift as rapid and paral-

2B-2

113



����������"�����'�	#���#��'
%�
*

+�,�
�*

-#�)	������ Clk
RstEn

���./00 ���.�00 ���.�00 ���.100 ���.200 ���.300 ���.400 ���.50

�./0 �.�0 �.�0 �.10 �.20 �.30 �.40 �.50

��6�./0 ��6�.�0 ��61.�0 ��62.100 ��63.200 ��64.300 ��65.400 ��67.50

��#��)8
�9

"�#����+1,�8#�������
�*���#��

"��

	
��
������

��

��.1�0 ��.1/0 ��.�0 ��./0
��.1�0 ��.1/0

. 0
��.�0

. 0
��./0

W

���
���

��
��

	
��

�

��
��
�


�

	�������
� ���

�������� !�
�����"��#�

$%�

��
�&'�
��
�����

���

� ��

	
I��

�������� !(
�����"��#�

$%�

��
�&'�
��
�����

�
�.
1�
0
�
�.
1/
0

�
�.
�0

�
�.
/0

�
�.
1�
0
�
�.
1/
0

�
�

��
.�..
0

�
�.
�0

�
�

��
./..
0/

�
�./
0

�'
��

���

)�
��

������

�
�
�
�
�
�
�

��������	
��
�
������

����

+�,�
�
��#�$

��	
��
����	
�� ��
*&�(%��+��

',��

$
��

	-$.

Fig. 5. (a) General overview of the proposed CNN accelerator with image
bank, kernel bank, computational sub-arrays, and DPU, (b) Bit-wise IMCE’s

sub-array.

lelizable operations to accelerate the MACs in convolutional

layers. As these operations are polynomial in the product of

bit-width multiplicands, reducing the bit-width brings remark-

able improvements in computation complexity dominating the

run-time of Neural Networks specially in resource-constrained

environments. The 1-bit convolution depicted in Eq-(2) is gen-

eralized to compute the dot-product and consequently convolu-

tion of k-bit fixed point integers [3]. Here we show an example
to elaborate the mapping method and operations of IMCE.

Assume I is a sequence of M -bit input integers (3-bit, as
shown in Fig. 6) located in input fmap covered by sliding ker-

nel of W , such that Ii ∈ I is an M -bit vector representing a
fixed-point integer. Now, we index the bits of each Ii element
from LSB to MSB with m = [0,M − 1], such that m = 0
and m = M − 1 are corresponding to LSB and MSB, respec-
tively. Accordingly, we represent a second sequence denoted

as Cm(I) including the combination of mth bit of all Ii ele-
ments (shown by colored elliptic). For instance, C0(I) vector
consists of LSBs of all Ii elements “0110”.
Considering W as a sequence of N -bit weight integers

(3-bit, herein) located in sliding kernel with index of n =
[0, N − 1], the second sequence can be similarly generated
like Cn(W ). Now, by considering the set of all mth value se-

quences, the I can be represented like I =
∑M−1

m=0 2mCm(I).

Likewise, W can be represented likeW =
∑N−1

n=0 2nCn(W ).
In this way, the convolution between I and W can be defined

as follow:

I ∗W =

M−1∑

m=0

N−1∑

n=0

2m+nbitcount(and(Cn(W ), Cm(I))) (3)

To efficiently load the resultant data from Quantizer unit to

IMCE, I andW should be reorganized. As shown in data orga-

nization and mapping step of Fig. 6, C2(W )-C0(W ) are con-
sequently mapped to the designated sub-array. Accordingly,

C2(I) − C0(I) are mapped in the following memory rows in
the same way. Now, IMCE can perform bit-wise parallel AND
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Fig. 6. Mapping method and operations of bit-wise IMCE.

operation of Cn(W ) and Cm(I) as depicted in Fig. 6. Con-
sidering the proposed SOT-MRAM sub-array architecture in

Fig. 4a, by activating two specific RWLs in each subarray, the

shared WBLs can be sensed to produce the result of AND oper-
ation. This data organization ensures that at least (Fw×Fh×C)
binary operations can be concurrently processed in one cycle

within one active sub-array.

The results of parallel AND operations stored within sub-

array will be accordingly processed using Bit-Counter. Bit-

Counter readily counts the number of “1”s within each resul-

tant vector and passes it to the Shifter unit. As depicted in

Fig. 6, “0001”, as result of Bit-Counter is left-shifted by 3-

bit (×22+1) to “1000”. Eventually, Sum unit adds the Shifter

unit’s outputs to produce the output fmaps.

The output fmaps coming from convolutional layer can be

later processed for down-sampling using average pooling. Av-

erage pooling operation is performed using Sum and Shifter

units, respectively, by summing up the output fmap’s tensors

and dividing (shifting) into rectangular pooling region size.

B. DPU’s Components

Quantizer: This unit quantizes a real number input ri ∈
[0, 1] to a k-bit number output ro ∈ [0, 1] using quantization
function [3]:

ro =
1

2k − 1
round((2k − 1)ri) (4)

Batch-Norm. Batch Normalization layer [7] alleviates the in-
formation loss during quantization by normalizing the input

batch to have zero mean and unit variance. The transforma-

tion can be written as:

Io(R) =
Ii(R)− μ√

σ2 + ε
γ + β (5)

where Io(R) and Ii(R) denote the corresponding output and
input pixels, respectively. σ and μ represent statistics achieved
during training mode, γ and β are trained parameters, and ε is
to avert round-off problem. During inference mode, all the pa-

rameters in aforementioned equation are stored in SOT-MRAM

sub-arrays, so DPU efficiently fetches each pixel of input fmap

and writes back the corresponding normalized pixel.

Activ. Function: The proper selection of activation func-
tion has a profound impact on network prediction accuracy spe-

cially in lower bit-width CNN. This unit can be reconfigured to

perform two distinct activation functions (i.e.
tanh(x)+1

2 and

sign(x)) to provide highest accuracy.
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V. EXPERIMENTS

In this section, we explore the mapping results and config-

uration space of various bit-width of input/weight in terms of

accuracy, memory storage, energy, and area over different data-

sets.

A. Accuracy

Bit-width configuration: Six bit-width configurations of
W:I (32:32, 1:1, 1:2, 1:3, 1:4, and 2:2) are considered for the

accuracy evaluation. The 8-bit gradient is applied to all config-

urations except 32:32 as the baseline with 32-bit gradient.

Data-set: The SVHN data-set [18], as a real-world im-
age data-set consisting of photos of house numbers in Google

Street View images, is selected for evaluation. There are 73257

digits for training, 26032 digits for testing, and 531131 addi-

tional digits as extra training data. The cropped format of col-

ored images (32×32) centered around each single digit is se-
lected. Accordingly, the images are re-sized to 40×40 and fed
to the model.

Model: ACNNwith 6 (bit-wise) convolutional layers, 2 (av-
erage) pooling layers and 2 FC layers that cost about 80 FLOPs

for a 40×40 image is adopted. It is noteworthy that we avoids
quantization in the first and last layers to avert further predic-

tion accuracy degradation [3, 5]. FC layers are equivalently

implemented by convolutions.

Training: For training, we use existing open source algo-
rithm presented by DoReFa-Net [3] where all the operations

can be accelerated significantly using bit-wise convolution of

fixed-point integers. Furthermore, we adopt batch normaliza-

tion and different dropout techniques to accelerate and avoid

over-fitting. The model is trained on TensorFlow [19] with 100

epochs where the lowest test error of epoch is reported. Fi-

nally ADAM learning rules is used for training with 0.001 as

learning rate in different configurations.

Results: Fig. 7a tabulates the test error results and relative
complexity of mentioned model under various bit-width con-

figurations. Complexity of inference and training are achieved

using W × I and W × I + W × G, respectively. Generally,
experiments replicate the conclusion drawn by [3] that weights,

inputs and gradients are progressively more sensitive to bit-

width changes. Fig. 7b depicts the prediction accuracy curve

vs. number of epoch in different configurations.

B. Storage Requirements

Six bit-width configurations of W:I (32:32, 1:1, 1:2, 1:3, 1:4,

and 2:2) are considered for the evaluation of memory storage

of CNN model discussed earlier. The breakdown of memory

Config. Complexity Test Error

W I Inference Training CNN Model

32 32 -(†) - 2.4%

1 1 1 9 3.1%

1 2 2 10 2.6%

1 3 3 11 2.4%

1 4 4 12 2.4%

2 2 4 20 1.8%
(†) The computation complexity of 32:32 is
not shown, since it is not computationally

efficient to perform bit-wise convolution of 32:32

configuration [3] and it is already reported in

previous works. � �� �� 	� 
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Fig. 7. (a) Test error of CNN model for processing SVHN in different
bit-width configurations, (b) Evolution of prediction accuracy vs. epoch.
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Fig. 8. Memory storage (inputs/weights) required by (a) CNN model for
processing SVHN, (b) AlexNet architecture for processing ImageNet.

storage is shown in Fig. 8a under different bit-width configura-

tions. As shown, lower bit-width the CNN model is, less mem-

ory storage is required. To further explore the memory storage

for larger data-sets, Fig. 8b depicts required memory storage

for three bit-width configurations of W:I (64:64, 32:32, and

1:1) for AlexNet model running Image-Net data-set mapped

to the proposed system architecture. It can be seen that 1:1 bit-

width configuration requires 39.7MB memory which is ∼12×
and ∼6× less compared to its double precision and single pre-
cision CNN implementations, respectively.

C. Energy Consumption Estimation

In this subsection, the energy consumption of discussed

CNNmodel considering different bit-width configuration is es-

timated. To perform the experiment, the circuit level simulation

is initially implemented in Cadence Spectre with NCSU 45nm

CMOS PDK [20]. SOT-MRAM resistive model of Fig. 3a is

used in the circuit simulation. The MTJ resistance (RMTJ) is

obtained from the NEGF approach [21], while the heavy metal

resistance (RSHM) is calculated based on the resistivity and de-

vice dimension. Accordingly, we massively modified the sys-

tem level memory evaluation tool NVSim [22] to co-simulate

with an in-house developed C++ code based on circuit level re-

sults. Clearly, AND operations performed by bit-wise IMCE

dominate the energy consumption of CNN’s models. There-

fore, we first report number of requisite ANDs of CNN model

for processing a single image of SVHN data-set. Fig. 9a shows

the break-down of performed AND operations in convolutional

layers using bit-wise IMCE. Correspondingly, we show the en-

ergy distribution of CNN divided into W/R, and, bitcount,
and add operations under different bit-width configurations.
Note that the energy consumption of Shifter and Bit-Counter

are plotted together under bitcount in Fig. 9b.
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Fig. 9. (a) Break-down of no. AND operations in bit-wise IMCE for
processing SVHN data-set, (b) Energy distribution under varying

configurations.
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Fig. 10. (a) Area distribution of conv. layers mapped to IMCE for processing
a single image of SVHN, (b) Breakdown of area overhead of IMCE.

D. Area Estimation

We have profiled the area distribution of different convolu-

tional layers of CNN model for processing a single image of

SVHN data-set in distinct configurations (1:1, 1:2, 1:3, 1:4,

2:2) in Fig. 10a. To further explore the area occupation of

IMCE, Fig. 10b shows the break-down of area overhead re-

sulted from add-on hardware to sub-arrays. Our experiments

show that totally IMCE imposes 15.4% area overhead to origi-

nal memory chip. It can be seen that modified row decoder and

Sum unit contribute more than 60% of area overhead.

E. Hardware Mapping Comparison

In this subsection, we compare the hardware mapping results

of CNN accelerators implemented by two promising resistive

memories (i.e. RRAM [8] and SOT-MRAM herein) over three

different data-sets in terms of energy and area under 45nm tech-

nology node. Table II shows that the proposed accelerator ex-

ploiting bit-wise IMCE can process BCNN over different data-

sets very efficiently. For instance, it processes binary-weight

AlexNet [5] for ImageNet favorably with 785.25μJ/img where
∼3× and 4× lower energy and area are achieved, respectively,
compared to RRAM-based design. In addition to area/energy

efficiency of SOT-MRAM compared to RRAM, such signifi-

cant improvements mainly come from two sources: (1) RRAM

design employs matrix splitting due to intrinsically limited bit

levels of RRAM device so multiple sub-arrays should be occu-

pied, (2) RRAM-based crossbar peripheral circuit’s overhead

such as buffers and DAC/ADC which contribute more than

85% of area and energy consumption [8, 10]. Note that the en-

ergy reported in Table II is the convolution computation energy

of all layers as an accelerator.

TABLE II

PERFORMANCE ESTIMATION OF CNN AND BCNNS ACCELERATORS

ImageNet SVHN MNIST

Designs
Energy

(μJ/img)
Area

(mm2)

Energy

(μJ/img)
Area

(mm2)

Energy

(μJ/img)
Area

(mm2)

CNN-RRAM

[8]
5444.85 21.25 850.42 0.09 18.39 0.054

BCNN-RRAM

[8]
2275.34 9.19 425.21 0.085 13.55 0.060

BCNN-SOT-MRAM 785.25 2.12 135.26 0.01 0.92 0.009

VI. CONCLUSION

In this paper, we pave a way towards novel concept of bit-

wise In-Memory Convolution Engine (IMCE) that could im-

plement the dominant convolution computations of either CNN

or binary CNN within computational sub-arrays. The hard-

ware mapping results show that the proposed accelerator based

on IMCE can process the binary-weight AlexNet [5] on Ima-

geNet dataset favorably with 785.25μJ/img where ∼ 3× and
4× lower energy and area are achieved, respectively, compared
to RRAM-based counterpart.
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